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The path integral quantization for higher derivative Chern-Simons theories in 
(2 + 1) dimensions coupled to fermions is treated. The diagrammatic and the 
Feynman rules are constructed and the regularization and renormalization of 
this higher derivative model are analyzed in the framework of the perturbation 
theory. Finally, the unitarity problem related to the possible appearance of 
ghost states with negative norm is also discussed. 

1. INTRODUCTION 

Quantum field theories in (2 + 1) dimensions have been studied with 
increasing interest in recent years because many interesting problems are 
present in the (2 + 1)-dimensional physics (Deser et  al., 1992a,b, 1988; 
Dunne et  al., 1989; Jackiw and Templeton, 1981; Matsuyama, 1990a,b; Li 
and Ni, 1990; Avdeev et al., 1992; Odintsov, 1992; Plyushchay, 1992; 
Jackiw and Weinberg, 1990; Hlousek and Spector, 1990; Kogan, 1991; 
Chon et al., 1993). On the other hand, dynamical systems described by 
means of singular higher derivative Lagrangians have also been investi- 
gated by several authors and is a problem of  current research in quantum 
field theory (Ellis, 1975; Leon and Rodriguez, 1985; Kerstyen, 1988; 
Nesterenko, 1989; Li, 1991). These kinds of  quantum theories containing 
higher derivative terms in the action are also frequently used in topics of 
condensed matter, such as high-T~, superconductivity. 

In a recent paper (Greco et  al., 1994) we considered the canonical and 
the path integral quantum formalisms for constrained Hamiltonian system 
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with a singular higher-order Lagrangian which describes the Chern- 
Simons (CS) theories in (2 + 1) dimensions coupled to fermionic matter. 
Perhaps one of the reasons these theories have not been treated intensively 
in spite of their physical interest is due to the appearance of ghost states 
with negative norm, which can cause unitarity violation (Hawking, 1987). 
However, they have also some kind of attraction. When higher derivative 
terms are added to the Lagrangian, the convergence of the corresponding 
Feynman diagrams can be improved (Nesterenko, 1989; Alvarez-Gaum6 et 
al., 1990). 

Due to the presence of the volume form et, vp in the (2 + 1) CS theories, 
dimensional regularization cannot be used. Consequently, another mixed 
regularization method involving higher covariant derivative and the Pauli- 
Villars method is applied (Alvarez-Gaum6 et al., 1990). This procedure 
preserves also the gauge invariance of the theory. Alvarez-Gaum6 et al. 
(1990) showed how the technique to introduce higher derivative terms in 
the action improves the behavior of propagators at large momentum, 
rendering the theory less divergent. 

It is necessary to emphasize that the perturbative formalism developed 
in Alvarez-Gaum6 et al. (1990) is not a proper formalism for a higher 
derivative field theory. Really, in a higher derivative field theory the phase 
space is generated by means of the Ostrogradski transformation 
(Nesterenko, 1989; Li, 1991; Greco et al., 1994). In fact, in Alvarez-Gaum6 
et al. (1990) higher derivative terms are added to the action with the unique 
purpose to render the theory regularized. At the end of the procedure, the 
multiplicative parameter A in front of the higher derivative terms, which 
has dimensions of mass and acts as a cutoff, is removed by taking the 
A -~ ~ limit. 

The main motivation of the present paper arises from the point of view 
of the field theory itself. More precisely, we consider how to treat quantum 
field theories described by singular higher derivative Lagrangians. In partic- 
ular, in this kind of theory there are two important problems that we want 
to consider. First, the possibility of unitarity violation. This naturally leads 
us to explore, in the framework of the path integral quantization, the states 
with negative norm related to the ghost state problem. Second, starting 
from a suitable definition of propagators and vertices and after a diagram- 
matic for the higher derivative model is constructed, we must study the 
number of divergent diagrams and give prescriptions about regularization 
and renormalization. The results must be confronted with those obtained 
for the corresponding model without higher derivative terms in the Lagran- 
gian. Consequently, at least for this case, a response concerning the 
convenience or not of adding higher derivative terms in the Lagrangian 
density can be given. 
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The paper is organized as follows. In Section 2, we briefly recall the 
main results about the Lagrangian and Hamiltonian formalisms for sys- 
tems with singular Lagrangians containing higher derivative terms. We 
consider the phase space definition and how we can go over from the 
Lagrangian description to the Hamiltonian description. This is necessary 
both to make possible the generalization of the Dirac's conjecture (Dirac, 
1964) and to extend the Faddeev-Senjanovic path integral quantization 
method (Faddeev, 1970; Senjanovic, 1976) to these kinds of constrained 
Hamiltonian systems. In Section 3, we consider a particular system de- 
scribed by a singular second-order Lagrangian for the fermion coupling to 
CS theories in (2 + 1) dimensions. The set of constraints is analyzed and 
the total Hamiltonian as a first-class dynamical quantity is given. In 
Section 4, by extending the Faddeev-Senjanovic method to higher deriva- 
tive theory, we perform the path integral quantization. By defining an 
effective Lagrangian density, we study the Feynman rules and the diagram- 
matic corresponding to this coupled system. In Section 5, by means of a 
suitable definition of a "new" bosonic propagator, we analyze the one-loop 
structure of the theory from a perturbative point of view. Moreover, 
prescriptions about the ultraviolet behavior of the correction to the boson 
line, the correction to the fermion line, and the vertex correction can be 
done. Finally, in Section 6, we discuss the unitarity problem by analyzing 
the properties of the bosonic propagator we have defined. 

2. PRELIMINARIES 

We start by considering a second-order Lagrangian density of the 
form 

Ar = s176 c?uA~, ~?~t?~.A~) (2.1) 

for a set of fields Ai (i = 1, 2 . . . . .  n) and where/~, v = 0, 1, 2 are space-time 
indices. 

The Euler-Lagrange equations obtained from the variational principle 
are given by 

0Ae t?~ ~?A o 
t?A~ ~3" O(O, Ai) + O, Ov t?(Ou~?vA~ ) = 0 (2.2) 

When we have in hand a second-order Lagrangian density as written 
in (2.1), the canonical variables are introduced according to the Ostrograd- 
ski (1850) transformation as follows. 

Let A~!)= A i and A~ z) =At be the dynamical field variables; conse- 
quently the canonical momenta are defined in the following way: 
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05O ~?5O 
p(1) ~3 (2.3a) 

p!2)= ~35O (2.3b) 

where we denote by ~i~. _= boA i the time derivative. 
The Lagrangian density is called nonsingular (or nondegenerate) if the 

canonical conjugate variables A~ ~) and P~) (e = 1, 2) introduced above are 
all independent, i.e., they are not of the form 

f ~  I ~), PI ~)) = 0 (2.4) 

In this case the extended Hessian matrix given by 
825O 

H,j = ~ ( 2 )  ~,e~ (2) (2.5) 

is nondegenerate (rankllH o H = n) and therefore the system of n Euler-  
Lagrange equations (2.2) is equivalent to a canonical system of 4n first- 
order equations, 

c?H OH 
A !~) = P~) = (2 6) 

i t 

The canonical Hamiltonian H is defined in the following way: 

H = A ~ ) P  ~)~ - 5 ~ = AIz)P(1)~ + A~2)P ~2)~- 5O (2.7) 

Otherwise, we say the Lagrangian density (2.1) is singular when a 
number r < n of constraints 

f~ P(~)), , = O, a = 1 , . . .  , r (2.8) 

exists, in such a way that the extended Hessian matrix H~j is degenerated 
(rank[IH~j ][ = n - r), and so equation (2.3b) is not soluble for all AI 2). The 
constraints (2.8) arising from equation (2.3b) are called primary con- 
straints. By introducing a set 2 ~ of  Lagrange multipliers it is possible to 
obtain the canonical equations for a constrained Hamiltonian system 
described by a singular second-order Lagrangian: 

A~ ~) = [A~ :), S~l ,  P~" = [P~), Hr ]  (2.9) 

where [ . , .  ] are the Poisson brackets and the extended Hamiltonian is 
given by 

H r  = Scan + ~af~a (2.10) 

By following this line, it is possible to obtain the generalized Noether 
theorems for a higher derivative constrained Hamiltonian system (Li, 
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1991). Moreover, as in the case of the dynamics for constrained Hamilto- 
nian systems developed by Dirac (1964) in systems described by singular 
Lagrangians with higher derivative terms, by demanding the stationarity of 
the primary constraints, it is possible to give an algorithm analogous to the 
Dirac-Bergmann one. So, by writing 

f~ = [f~-l, HT] (2.11) 

the algorithm must be continued until )cam satisfies 

f~+l [f~,, HT] b = m = Cakfb (k _<m) (2.12) 

All the constraints fm are classified into two classes. A constraint fa is 
called "first class" if [fa,fb] = 0 (mod fc) for all constraints; otherwise the 
constraints are "second class." Let us assume that we work with higher- 
order-derivative singular Lagrangians, for which there are no problems 
with Dirac's conjectures. Particular cases having objection or problems 
with the Dirac algorithm were treated and analyzed in the literature 
(Appleby, 1982; Castellani, 1982; Sugano and Kamo, 1982; Sugano and 
Kimura, 1983; Costa et al., 1985). 

On the other hand, it is well known that the gauge theories play an 
important role in the framework of modern field theories. These theories 
present local gauge invariances and each first-class constraint corresponds 
to a gauge invariance of the theory under local gauge transformation. 
There are simple cases in which all the constraints are first class, so it is not 
hard to construct the generator G(A~ ~), PI ~)) of the gauge transformation 
parametrized by an infinitesimal arbitrary function e: 

G= ~. a~Gk= ~ (D%)Gk (2.13) 
k = O  k = O  

Let us consider the variations 

6A! ~)= ~ e k ~Gk 
, ~?p!~) ( 2 . 1 4 a )  

k = 0  I 

~ p ( 9 = -  ~ e k OGk 
k = o OA (i ~) (2.14b) 

When all the constraints Gk are first class satisfying the recursive relations 

[Go, HT] = 0 (mod primary constraints) (2.15a) 

Gk_ t + [G~, Hr] = 0 (rood primary constraints) (2.15b) 

Gm = 0 (rood primary constraints) (2.15c) 

the generator G given in (2.13) is conservative, i.e., G=OG/3t + 
[G, Hr]  = 0 (mod primary constraints). 
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The model we will consider in the next section is more complicated 
because it has constraints of both first class and second class. Therefore in 
the framework of  the path integral quantization, we must extend to higher 
derivative systems the Faddeev-Senjanovich method, valid when first- and 
second-class constraints are present. 

3 .  H I G H E R  D E R I V A T I V E  C S  T H E O R I E S  

In Greco et al. (1994)  we considered the following singular Lagrangian 
density: 

O9 ~___ ~r.Oto p _}_ ~Of _}_ "~int -}- t ~ h  (3.1) 

describing the fermionic matter couplet to higher derivative CS theories�9 
The different pieces in (3.1) are as follows: 
(i) The electromagnetic Lagrangian density with a topological mass 

term, i.e., a CS term, is 

LPtop = -- LvF""  + -~u eu"P~3~AvA~ (3.2a) 

where the field strength tensor is written in terms of potentials in the usual 
way Fu,. = 0uA,, - 0~,A,,. 

(ii) The fermionic and interacting parts  are, respectively, 

�9 a + l  _ 
i ~ - - - ~ - )  .~b 7 ~ b - - m ~  (3.2b) 

~.(LOin t : e~7~'~bA~, (3.2c) 

(iii) The part containing higher derivatives is given by 

C 
~ h = --"-~ O pFuv~3RF~'~ (3.2d) 

The constant x in equation (3.2a) is the topological mass of  the gauge 
field and its dimension is (length)-1; in equation (3,2d) the constant c has 
dimension (length)'. We will use the convention e~ 1, the Min- 
kowski metric g~ is g~,. = diag(l, - 1 ,  - 1 ) ,  and the Dirac 7-matrices are 
7 ~ = a 3, 7 ~ = icr ~, and 7 2 = i o  "2 (the a 's  are the Pauli matrices). 

After the Ostrogradski transformation is performed according to 
equations (2.3), the momenta po)u, p{2)~, l=i{=) and FI (~) canonically conju- 
gate, respectively, to the independent field variables A ~ ) =  A~, AI2)= Aa, 
qJ~, and qT, remain defined and are given by 
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po)o : c ~3oc3iFO i (3.3a) 
7c 

~ijA j + c (V2FOi + C3o OjFji ) _ ~3oP(2)i (3.3b) po) i  : FiO + 

p~2)o = 0 (3.3c) 

p<2)i = _ c  OoFO i (3.3d) 
7~ 

FI(a)(x) = i ( ~ 2  1))7o~(~) (3.3e) 

/a  + 1 ) ' ~  
I:I,~) (x) = - i~ ~ - ) ~ u , ~ ) 7 0  (3.3f) 

where the Latin indices take the values i , j  = 1, 2. 
Going on with the Dirac algorithm, it is possible to find the Dirac 

brackets and to construct the canonical quantization (Greco et al., 1994). 
Summarizing the results, we can conclude that the Lagrangian density 

(3.1) describes a constrained Hamiltonian system which has three first-class 
constraints associated with the gauge symmetries of the system and two 
fermionic second-class constraints. The total Hamiltonian is given by 

H r  = J'd2x(~t~can + flaf~)a) (3.4) 

where i f  can is defined as 

~gca n = A (2)e'l)/~ -4-- A (2)p(2)# + r l=I(~)~(c~) --  ~ (3 .5)  

The three first-class constraints dp, in equation (3.4) are given by 

d& (x)  = P(2)~ ~ 0 (3.6a) 

dPz(x ) = --  P ~  + ~iP(2)i(x) ~ 0 (3.6b) 

d) 3 (x)  = --  ie(~(~)(x) 1-I(~)(x) + ~ ) ( x ) ~ ( ~ ) ( x ) )  

47z OiAj(x)eq  - 3iP~ ~ 0 (3.6c) 

and fl" (a = 1, 2, 3) are three arbitrary parameters. 
The two second-class constraints read (o_1) 

a<~)(x) = [I~)(x) , i - T -  7o0(~) ,~ 0 (3.7a) 

/ a  + 1)'~ ~ ~ 
~<~)(x) = l=I,,)(x) + i / ~ / q / ( ~ ) 7 o  ~ 0 (3.78) 
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4. DIAGRAMMATIC AND FEYNMAN RULES FROM 
PATH-INTEGRAL QUANTIZATION 

Now we must carry out the path-integral quantization. This can 
be done by generalizing the Faddeev-Senjanovic method (Faddeev, 
1970; Senjanovic, 1976) so that it is available for higher derivative field 
theories. The partition function we propose for higher derivative theories 
reads 

• 6(fl )6(f2)6(f3) det[(I)l, *2, (I)3,fl ,f2,f3]D6(f~(,))6(f~(t~)) det[f~(,), f~(t~)] 

The quantity He = ~ d2x JC'e in equation (4.1) is the extended Hamil- 
tonian, the generator of  time evolutions, and it is defined in terms of the 
Hamiltonian density: 

Jge = ~c~n + 6 ~  + 2(~) ~q(~) + ~(~)2(~) (4.2) 

where 6 is the bosonic Lagrange multiplier and ~. and 2 are the fermionic 
Lagrange multipliers, corresponding to the three primary constraints (3.3c), 
(3.3e), and (3.30. 

The quantities f~, f2, and f3 are gauge-fixing conditions. As shown in 
Greco et al. (1994), a convenient set of  such conditions compatible with the 
equations of motion and satisfying det[fa, (I)b]o ~ 0 for all first-class con- 
straints (I), is 

fl  = ~i A~ ~ 0 (4.3a) 

f2 = A(o 2) ~ 0 (4.3b) 

f3 = ~-~n VZA(o~) + eeik~k(~TiqJ) + D 1---~z [] ~kA~~ ~O (4.3c) 

The determinants appearing in equation (4.1) can be explicitly com- 
puted and also one can take path integral over the fields A(o 2), P")~, p(2)u, 
H('), and l-I ('), so one finds for the partition function 

Z = f ~A(f ~A,2) ~((~) ~q~(,~) 6(f,) 6(f~) exp i[ f  d~x ~eof~] (4.4) 
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The effective Lagrangian density 50~ff defined in (4.4) is given by 

c 2 
1 Fi jFiJ  - c 2 1 (A(2) _ ~3iA(o,))(A,2) OiA(ot)) 2~r 50~ec= -~ ~ G i j G i J - - ~ .  i . . . .  AI2~Aa~' 

~ OiFjk~iFJk C2 C 2 C 2 q- - -  A (2)VZA (2)J _ _ _  y72A (2)~J a ( l)  (V2A (oI)) 2 v ~ a j  v i x  0 

~ ? A ( l ) A O ) d j  ~ rc3.Ag)~A(l)dj•  
4~  i o j + ~  ~ ,  s J o " 4 g  ' s 

/ a +  l _ a - 1  c3 

where G~j ,3.A (2) - A(2) = -/gj i a n d V  2=~i(3 i. ~ t - - j  

By looking at equation (4.4), it can be seen that the quantum problem 
is defined in terms of a path integral in which there are four independent 
fields. Consequently, it is possible to apply diagrammatic techniques defin- 
ing proper Feynman rules for propagators and vertices corresponding to 
the fields A ~1), A 12), ~-(~), and r 

Alternatively, the path integral equation (4.4) can be written 

where 

5~ = 50e~- - A,f,  - A3f3 (4.7) 

for the Lagrange multipliers A, and A3. 
As carried out in a different context (Dobry et  al. ,  1990; Greco and 

Zandron, 1991), we can define a bosonic vector quantity Xz, having the 
same dimension as the vector field A(~ '), whose components are given by 

u _ { A ( i  ) cA(2  ) 1 ) - ~ - \ . ,  i ,CAl,cA3 (4.8) 

where the compound index Z takes the seven values 0, 1 , . . . ,  6. 
Therefore, when the action is written in terms of the vector quantity 

(4.8) we can easily recognize the propagators defined by the quadratic part 
of the Lagrangian (4.7) and the remaining part can be represented by 
vertices ('t Hooft and Velman, 1973). Consequently, equation (4.7) can be 
seen as the Lagrangian density which defines the effective action for a 
system describing the boson vector field X~ coupled to a matter Dirac 
spinor field. The effective action 50* can be written 

5 ~ = 50*(Xz) + 50"(~b) + 50*t(Xz, r (4.9) 
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where, taking into account  equat ion (4.5), one has 
D 

5r = d3x ~ f  (4.10a) 

i 

5a*(Xz, ~/) = d3x [e~(FzXZ)O] (4.10b) 

#~ = " d 3 x [ ~  Xz(D-~)ZAX^]  (4.10c) 

The seven matr ices F~ = (FAo, FA,, Fn,, ['A1, FA3) defined in equat ion 
(4.10b) are 

F.4 0 ~" ~0,  F A  i = ~?i, FB i  = O, FA1 ~--- 0 ,  FA3 = cyieikO k (4.1 1) 

The  7 • 7 matr ix  ( D - I )  zA defined in equat ion (4.10c) is the inverse of  
the  p r o p a g a t o r  of  the bosonic  object X z given in (3.15). I t  is Hermi t ian ,  
nondegenerate ,  and invertible and so the p r o p a g a t o r  DxA(k), in the m o m e n -  
tum space, can be evaluated.  The  compu ta t ion  of  the matr ix  elements 
DxA(k ) of  the p ropaga to r  in the general case is s t ra ightforward but  very 
tedious. These were obta ined by using R E D U C E  3.2 and are long algebraic 
expressions which we do not  write here explicitly. 

In the simpler x =  0 case, de t [D- t (k) ]  in the m o m e n t u m  space is given 
by 

de t [D- l (k) ]  = c 2 k ~ k S ( l - c 2 k Z ) 2 e ( e - ~ ) I ~ - ( ~ - k 2 ) l  (4.12) 

z 2 - k  2. F r o m  now on we rename the pa rame te r  where e = k l  + k z - k ~ = k  2 
c in such a way  that  it is not  necessary to write the constant  n explicitly. 

Fo r  x = 0, we have compu ted  the following mat r ix  elements of  the 
boson  p r o p a g a t o r  DzA(k): 

1 - c %  ikl ikz 
Doo = (1 - cZkZ)c2kZk~ ' D03 ~" - - 0 3 0  - -  c k 2 k  2,  0 0 4  ~-- - - 0 4 0  = C k 2 k  2 

2 2 _ c 2 k  2 kokz(1 , c2e) k~klk2(1 - c2k 2 - c2e) 
Dll = k4~( 1 - cZ*)( 1 - c2k2) ' DI2 = D21 = k4e( 1 - c2~)( 1 - cZk 2) 

ick 0 k 22 - ick 0 k I k2 
D 1 3  -~ - D 3 1  - k2e(1 - -  C2/3) ' D I 4  = - D 4 1  - k2e(1 - -  c2/3) 

ick 1 - ik 2 
015 = -D51 = k---~, D16 = -D61 ck%(1 - c28) 

2 2 __ c X k  2 kok  1 ( 1 -- cEe) - -  ickoki k2 
D22 = k4e( 1 -- c2e)(1 -- c2k2) ' D23 = - D32 - kEe( 1 - -  c 2 e )  



Singular Higher Derivative Lagrangians ! I 

icko k2  
D24  ~--- - -  D42  - k 2 5 ( 1  - c 2 8 ) '  

ikl 
D26 = - - 0 6 2  ck28( 1 - c25)  ' 

D 1 I k~ . =  ~ ~1 - ~ +  

k l k 2  
D34 = D43 - k2ok 2 

D44 =~o2 [1 - k ~ +  

kok l  
D46  : D 64  : k2e(1 - cZe) ' 

ick 2 
D25 = - D 5 2  = k2 

- k 0 k2 
0 3 6  = D63  - -  k 2 5 (  1 - -  c25)  

c 2/~ ~/~o2 ( 1 - c2lc 2) -] 

5(1-- d - ~ : - 7 ~ c ~ ) j  
kl  kzc2(  1 - cZk 2) 

e( 1 - c2e)( 1 - c2k 2 - c25) 

dt:~ ~o(1 - c~: ~) ] 
5(1- ~-~)(i--/~ --c~5)/ 

1 
0 6 6  ----- c 2 k 2 5 (  1 - c%) (4.13) 

and all the others vanish. 
We can write the Feynman rule propagators and vertices. 
(i) Propagators: We associate with the propagator DZA of the bosonic 

field Xz a wavy line connecting two generic points: 

X z ~ X ^  =- D~- A (k) 

and with a straight line the usual propagator of the fermionic field q/, 

--  i i ( 7 '  p -- m)  

p~ 7 "P + m  p 2 + m 2  

(ii) Vertices: Then, the three-leg vertex of the model is 

t = -- ie F z 

Moreover, as usual we have to take into account a minus sign for 
every closed fermion loop and another minus sign for diagrams related to 
the exchange of  two fermion lines, internal or external. A combinatorial 
factor correcting for double counting in case identical particles occur also 
must be taken into account. 

5. P E R T U R B A T I V E  M E T H O D  I N  H I G H E R  D E R I V A T I V E  Q E D .  
O N E - L O O P  S T R U C T U R E  

Now we examine the perturbative treatment of this gauge theory 
which describes the interaction of the bosonic object Xz with the Dirac 
spinor field. Using the above rules, a power-counting analysis shows that 
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the superficial degrees of divergence G are essentially those of the QED, so 
we are led to the following one-loop diagrams: 

which correct the fundamental parameters and fields of the theory. 
If  we call IIzA(k ) the correction to the boson line or vacuum polariza- 

tion diagram, we can write 
k+p 

HxA(k ) = 

: _ e 2 I  d3p 1 
j (~-~3 (p2 + m2)[(p + k)2 + m 2] 

x Tr[ F~ (7 �9 P + 7 ' k - m) FA (7 ' P -- m)] (5.1) 

By looking at equations (4.11) for the F~ matrices, we conclude that the 
integral expression for the correction to the boson line is similar to the model 
without higher derivatives; therefore the ultraviolet behavior of the integral 
(5.1) is the same as in usual QED, i.e., for large momentum p, the Feynman 
integral (5.1) behaves as ~ S dp and so this diagram is linearly divergent. This 
must be expected, because this model is higher derivative only with respect 
to the boson field, and the propagator of that field does not appear in the 
vacuum polarization diagram. Consequently, the evaluation of the integral 
(5.1) is carried out by introducing a Feynman parameter and the new loop 
momentum p' = p + kx. We note that in the case in which the complete CS 
Lagrangian (3.2a) (with ~c # 0) is considered, the dimensional regularization 
cannot be used safely due to the presence of the volume form e~vp. In that 
case, another gauge-invariant regularization method, for instance the Pauli-  
Villars one (Alvarez-Gaum6 et al., 1990), must be used. The renormalization 
procedure is implemented as in usual QED. 

Now we consider the second diagram given above. Let 12(p) be the 
correction to the fermion line (suppressing spinor indices). This diagram is 
given by the following integral expression: 

Z(p) = 
p ~  p - -k  

d3k F~(7 " p - y  "k-= m)FA 
= -ie  G • (5.2) 
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When the explicit sum on the Greek indices Z and A is carried out, we 
can see that we have only the propagators Doo(k), D~(k) ,  D~2(k), D22(k), 
and O66(k ). From equations (4.13), it can be seen that, for large momen- 
tum, the propagators Doo, Dll, D~2, and D22 behave like k-4; while the 
propagator D66 behaves like k-6. Therefore the new propagators have an 
ultraviolet behavior in such a manner that the Feynman integral (5.2) gives 
a convergent result (for large k the integral behaves as ~S dk/k3) �9 

The last one-loop diagram we consider is the vertex correction, which 
we call V~(p, q): 

p+k  q+k  

V~(p, q) = p ~ ~..,~_ _ r  q 

d3k ( 7 " P + 7 " k - m )  (~- q + v .  k - m )  
= - i e  3 j(Zrc) 3 Fz -(p ~ - + ~ - 2  Fz (~ :~z-+~-~ FAx D~^(k) 

(5.3) 

Once more, by introducing the expressions (4.13) for the boson 
propagators D~A and the F matrices (4.11) and carrying out the summation 
over the indices, we can see that the diagram is also convergent, because for 
large momentum the integral behaves as ~S dk/k 4. 

We conclude that in the one-loop diagrams in which the propagator 
D~A of the boson X~ occurs, the ultraviolet behavior is improved and the 
divergence of these diagrams is eliminated. The remaining diagrammatic 
with a fermionic loop does not change and the degree of divergence is that 
of usual QED. Therefore, the use of higher derivative terms in the 
Lagrangian allows us to improve the behavior of the correspondent propa- 
gators at large momentum, rendering the theory less divergent. 

6. UNITARITY 

At this stage, another important problem to take into account is the 
unitarity problem. It is well known (Hawking, 1987) that in higher deriva- 
tive theories, the unitarity can be violated when ghost states with negative 
norm are present. To say something about the unitarity, we must analyze 
more carefully the bosonic propagator we have defined. 

First we note that the Hermitian matrix D^~(k) whose elements were 
defined in (4.11) can be diagonalized and so its eigenvalues are determined. 
The corresponding secular equation depends only on k 2 and k 0 and 
therefore we can study the problem for a given value of the three-vector k~. 
Let k, = (ko, kl = 0, k2) be the value for the three-vector momentum. The 
resulting matrix can be "diagonalized" in three blocks: two 2 x 2 blocks 



14 Foussats et aL 

and one 3 • 3 block. The matrix elements which correspond to the two 
2 • 2 blocks do not contain any single pole. Therefore, such elements do 
not have corresponding S-matrix elements. The 3 x 3 block has the three 
single poles which appear in the theory. If  we write 

A = c 4 k 2 e ( e - - ~ ) [ e - ( ~ - k 2 ) l  (6.1) 

then we can write the 3 • 3 matrix 

1 
g a b  = -A • garb (6.2) 

The matrix residue K,Rb (a, b = 1, 2, 3) is given by 

k~~ (1 - c~k ~ -  c ~ )  ~ 
[ - -  c 2 k 2  

k 
i - -  (1 - -  c Z k  2 -  C2e) 

r 

- i k o k 2 c (  1 - r - -  cEe) 

k 
- i - ( 1 - c2k 2 - -  C2/~) ikok2c(1 - c2k 2 - -  C28) 

r 

1_~ ( 1 - c2k 2 - -  r - k o k (  1 - cZk 2 - -  C2e) 
c -  

- k o k (  1 - c 2 k  2 -  C2~) c2k4( 1 - c2k 2) 

The matrix g a b ( k )  has three single poles in the values of  e: e = 0, 
e = 1/c 2 and e = 1/c 2 - k  2, as can be seen from (6.1). 

The matrix residue K~b(k) can be diagonalized and has three different 
nonzero eigenvalues ~(~) [(e) = 1, 2, 3]. Consequently, we can define a set of 
real currents J~)(k) ,  one for every nonzero eigenvalue, which are mutually 
orthogonal and eigenstates of  the matrix K~b(k ) ( ' t  Hoof t  and Velman, 
1973), i.e., 

J~) (k )J~) (k )  = 0 if (a) ~ (fl) (6.3a) 

K~b(k)J~)(k)  = e( ' ) (k)J~)(k)  (6.3b) 

For instance, the real bosonic currents for the emission of a particle 
corresponding to incoming particles of the S-matrix, when all the eigenval- 
ues of  the matrix K g are positive, must be normalized in such a way that 

J?) (k )K~b(k )J~) (k )  = + 1 (6.4) 

The source currents thus defined are properly normalized for emission 
of a particle (or an antiparticle). Of  course, when the absorption of a 
particle (or  an antiparticle) is considered, in the matrix K R appearing in 
equations (6.3) the momentum k must be replaced by - k .  

On the other hand, once  the matrix residue Ka~ is diagonalized, the 
abo" ~ equations (6.3) imply that the currents are of the form: 

J(~) = (0, 1/(~(~)) 1/2, O) 
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with the obvious result 

J<:)J<:) = [K R] ~ ~ (6.5) 
(~) 

Equation (6.5) holds when the eigenvalues of the matrix K R at the pole 
are positive, that is, when unitarity is preserved and the normalization (6.4) 
holds. In the case of negative eigenvalues, to recover unitarity, the normal- 
ization in (6.4) must be done with a minus one. As is well known, when the 
matrix residue K R has a negative eigenvalue at the pole, it corresponds to 
states with negative norm and they are physically unacceptable. The 
corresponding particles are called ghosts. This is the prescription to retrieve 
the unitarity of the theory and it is usually called the indefinite metric 
prescription. 

Let us consider the secular equation corresponding to the matrix K R, 

1 
~3 ~2[ 1 - -  c2k 2 - -  c6k  6 q- cSk  8 

( 1 - c2k2)c 2 

- c 2 e ( 2  - c2k  2 _ c4k 4) q- c4~2(2 - c2k  2) - -  C6/3 3] 

1 
(1 - c2k2)c 2 ~(1 - c2e)(1 - cZk 2 - cze)(  1 - c4k 4 - -  C2g)  

k 2 
+ 1 - cZk ~ e2( 1 - c2g)2( 1 - cZk  2 - c2~) 2 = 0 (6 .6)  

The three eigenvalues can be given, for example, as power series of 
whose coefficients are functions of k 2. From equation (6.6) it is possible to 
analyze the residue of the eigenvalues at every pole. For instance, if we 
work with the dimensional parameter c in regimes satisfying the condition 
c2k  2 < 1, we can assert that the residue at the pole e = 0 is 

1 
c5 (1 - c6k 6) > 0 (6.7a) 

Therefore, in this case the normalization in (6.4) must be given with plus 
one. 

Similarly the residues at the poles e = 1/c 2 and e = ( 1 / c 2 - k  2) are, 
respectively, 

-k2(1 + cak 4) < 0 (6.7b) 

and 

c2k4( 1 - cZk 2) > 0 (6 .7c )  
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Finally, we note that it is easy to show that the set of constraints is 
modified when the limit c = 0 is taken in the system. The fermionic 
constraints do not change, but the bosonic constraints (3.6a) disappear in 
this case, with p(1)0= 0 as the unique primary bosonic constraint. The 
consistency condition on the constraints gives only on e secondary con- 
straint. It is possible to find the two first-class constraints characteristic of 
usual electrodynamics with the CS term. The two corresponding gauge- 
fixing conditions are given by f~ = OiA (I)i ~, 0 and f 2  = A(0 I) ~ 0. The parti- 
tion function analogous to (4.1), after integrating in the variable A(01) by 
using the function 6(f2), reduces to 

= f ~ d ~  ') ~ ~ b  6(f2) exp i[Seer] (6.8) Z 

where Sefr is now the effective action for electrodynamics with topological 
CS term. 

If  we look at the limit c ---, 0 for the propagator (6.2), we can easily see 
that two of the singularities go to infinity and the only remaining pole is 

= 0, as expected. 

7. CONCLUSIONS 

Continuing the work started in Greco et al. (1994), in the present 
paper we found the Feynman rules and the diagrammatic for a higher- 
derivative Chern-Simons theory coupled to matter. This was done in the 
framework of the path integral quantization method. The definition of the 
effective Lagrangian density allows us to define a suitable "bosonic field" 
and to find the propagator of such a bosonic object. The fermionic 
propagator for the matter field is the usual one. The model has a unique 
three-leg vertex and so all the diagrams are obtained by connecting vertices 
and sources by means of the propagators thus defined. Using the perturba- 
tive theory, we analyzed the one-loop structure of the model. The results 
obtained for the one-loop diagrams in which the boson field propagator 
occurs allow us to guarantee that the ultraviolet behavior is improved and 
the divergence of these diagrams is eliminated. Therefore, we conclude that 
the presence of higher derivative terms in the Lagrangian density gives rise 
to a new bosonic propagator, which makes the theory less divergent. 

We have also shown, unlike what occurs in usual quantum electrody- 
namics, that in this higher derivative model there are three single poles. 
Two of these poles go to infinity in the limit c--,0, recovering the 
electrodynamic singularity. 

Finally, we also gave a prescription to eliminate the ghost states with 
negative norm in such a way that unitarity can  be preserved. 
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